MIMO-OFDM signal optimization for SAR imaging radar

نویسندگان

  • Jean-Yves Baudais
  • Stephane Meric
  • Vishal Riche
  • Eric Pottier
چکیده

This paper investigates the optimization of the coded orthogonal frequency division multiplexing (OFDM) transmitted signal in a synthetic aperture radar (SAR) context. We propose to design OFDM signals to achieve range ambiguity mitigation. Indeed, range ambiguities are well known to be a limitation for SAR systems which operates with pulsed transmitted signal. The ambiguous reflected signal corresponding to one pulse is then detected when the radar has already transmitted the next pulse. In this paper, we demonstrate that the range ambiguity mitigation is possible by using orthogonal transmitted wave as OFDM pulses. The coded OFDM signal is optimized through genetic optimization procedures based on radar image quality parameters. Moreover, we propose to design a multiple-input multiple-output (MIMO) configuration to enhance the noise robustness of a radar system and this configuration is mainly efficient in the case of using orthogonal waves as OFDM pulses. The results we obtain show that OFDM signals outperform conventional radar chirps for range ambiguity suppression and for robustness enhancement in 2×2 MIMO configuration.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-Performance Anti-Retransmission Deception Jamming Utilizing Range Direction Multiple Input and Multiple Output (MIMO) Synthetic Aperture Radar (SAR)

Retransmission deception jamming seriously degrades the Synthetic Aperture Radar (SAR) detection efficiency and can mislead SAR image interpretation by forming false targets. In order to suppress retransmission deception jamming, this paper proposes a novel multiple input and multiple output (MIMO) SAR structure range direction MIMO SAR, whose multiple channel antennas are vertical to the azimu...

متن کامل

Backprojection Analysis of MIMO SAR

Multiple-input multiple-output (MIMO) techniques have brought significant advances to wireless communications. In recent years, researchers have sought to bring similar advances to radar using MIMO. One specific area that has received relatively little attention is MIMO synthetic aperture radar (SAR). The advantages that MIMO might provide to SAR are not well represented in literature. This pap...

متن کامل

Multifrequency OFDM SAR in Presence of Deception Jamming

Orthogonal frequency division multiplexing (OFDM) is considered in this paper from the perspective of usage in imaging radar scenarios with deception jamming. OFDM radar signals are inherently multifrequency waveforms, composed of a number of subbands which are orthogonal to each other. While being employed extensively in communications, OFDM has not found comparatively wide use in radar, and, ...

متن کامل

IRCI-Free MIMO-OFDM SAR Using Circularly Shifted Zadoff-Chu Sequences

Cyclic prefix (CP) based MIMO-OFDM radar has been recently proposed for distributed transmit antennas, where there is no inter-range-cell interference (IRCI). It can collect full spatial diversity and each transmitter transmits signals with the same frequency band, i.e., the range resolution is not reduced. However, it needs to transmit multiple OFDM pulses consecutively to obtain range profile...

متن کامل

Application of Complete Complementary Sequence in Orthogonal Mimo Sar System

The Complete Complementary Sequence (CC-S) consists of several complementary orthogonal sequences and has optimal sidelobe level performance, which is satisfied with the requirement of the orthogonal Multiple Input Multiple Output (MIMO) radar signals. Aimed at the difficulty of high sidelobe level in Synthetic Aperture Radar (SAR) imaging processing in range dimension, an approach of depressin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • EURASIP J. Adv. Sig. Proc.

دوره 2016  شماره 

صفحات  -

تاریخ انتشار 2016